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ABSTRACT 
 
The over represented number of novice drivers involved 
in crashes is alarming. Driver training is one of the 
interventions aimed at mitigating the number of crashes 
that involve young drivers. To our knowledge, Advanced 
Driver Assistance Systems (ADAS) have never been 
comprehensively used in designing an intelligent driver 
training system. Currently, there is a need to develop and 
evaluate ADAS that could assess driving competencies. 
The aim is to develop an unsupervised system called 
Intelligent Driver Training System (IDTS) that analyzes 
crash risks in a given driving situation. In order to design 
a comprehensive IDTS, data is collected from the Driver, 
Vehicle and Environment (DVE), synchronized and 
analyzed. The first implementation phase of this 
intelligent driver training system deals with synchronizing 
multiple variables acquired from DVE. RTMaps is used to 
collect and synchronize data like GPS, vehicle dynamics 
and driver head movement. After the data 
synchronization, maneuvers are segmented out as right 
turn, left turn and overtake. Each maneuver is composed 
of several individual tasks that are necessary to be 
performed in a sequential manner. This paper focuses on 
turn maneuvers. Some of the tasks required in the analysis 
of ‘turn’ maneuver are: detect the start and end of the 
turn, detect the indicator status change, check if the 
indicator was turned on within a safe distance and check 
the lane keeping during the turn maneuver. This paper 
proposes a fusion and analysis of heterogeneous data, 
mainly involved in driving, to determine the risk factor of 
particular maneuvers within the drive. It also explains the 
segmentation and risk analysis of the turn maneuver in a 
drive.  
 
 

INTRODUCTION 
 
Automobiles have greatly improved the transportation of 
goods and people around the globe. This factor in-return 
has enabled us to advance in many other areas. Crashes 
have been the most prominent danger associated with 
automobiles. These often result in serious injuries or loss 
of human life. Over 10 million people are injured yearly 
worldwide in road accidents. These include two to three 
million severely injured and 400,000 fatalities [1]. 
 
It is well known that drivers are at a greater risk during 
the early years of driving. About 95 per cent of all 
accidents are attributed to the human factor [2], whether it 
is driving too fast, lack of experience or simply 
misjudging a dangerous situation. Research indicates that 
young drivers are over represented in crashes because of a 
lack of experience, poor hazard perception, and a 
tendency to take risks [3,4]. Research suggests that the 
best learning environment for the inexperienced driver is 
the real road system under the supervision of an 
experienced driver or instructor [3,4]. 
 
Driver perception and learning of a particular driving 
hazard remains a key factor impacting road safety. In-
order to comprehensively tackle road safety issues, a 
complete and integrated framework need to be developed 
that would include and examine all the parameters that 
influence driving (i.e. cues related to road, vehicle and 
driver). This requires the need for a system that can assess 
multiple maneuvers in a driving scenario as high risk or 
low risk based on the parameters acquired from DVE. 
This paper focuses on decomposing and analyzing turn 
maneuvers.  
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Figure 1 illustrates three sensors, namely FaceLab (eye 
tracking system), MobileEye (lane and obstacle detection 
system) and Vigil System (GPS and vehicle dynamics 
data logger) to gather data from the driver, environment 
and vehicle respectively. RTMaps is used to synchronize 
data from all the above mentioned sensors.  

 
The primary driving tasks are divided into three broad 
categories: navigation and routing, guidance and 
maneuvers, and control [5]. 
 
 

 

Figure 1.  Multi-sensor system structure for Intelligent Driver Training System (IDTS)  

 
The rest of the paper is organized as follows: the next 
section will briefly mention the related research work in 
the field of modeling an integrated driving scenario. The 
following section will comprehensively present our 
approach for developing the Intelligent Driver Training 
System (IDTS). This will be followed by mapping of the 
drive and future work section. Discussion and conclusion 
will be presented in the final section.  

BACKGROUND RESEARCH 
 
Assessing Primary Driving Tasks 
 
It is well known that drivers are at a greater risk during 
the early years of driving. Researchers in [5] have defined 
the primary driving tasks as functions that are central to 
driving and without which moving a vehicle to a 
destination safely would not be possible. 
 
Many intelligent systems have focused on warning the 
driver by predicting the trajectory of an oncoming 
obstacle [7], [6]. Only a few of these systems evaluate the 
overall driving situation and need to make the driver 
aware of relevant contextual knowledge extracted from 
sensors [8].  

Execution of all these tasks is necessary for the driver in 
order to drive effectively. 
 
Responding to critical events during driving requires 
timely response. A point reiterated in literature critical of 
driver training is that more in-depth analysis of the 
driving task and traffic situations is required. This 
analysis should take into account the cognitive skill aspect 
such as hazard and risk perception, decision-making, self-
monitoring processes, learning styles, and risky attitudes 
to improve training [9, 7]. 
 
Sensors And Data Synchronization  
 
Sensor fusion combines several sensor measurements in 
order to enhance the knowledge about the state of an 
object under observation. To increase the safety and 
efficiency for transportation systems, applications need to 
combine and comprehensively evaluate the data acquired 
from multiple sensors. Over the years, different type of 
sensors like radars, Global Positioning System (GPS), 
accelerometers, gyroscopic sensors and cameras have 
been used extensively in Advanced Driving Assistance 
Systems [6,7,8].   
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Various sensors can be used to perform obstacles 
detection: laser scanner, radar range, sonar range, vision 
(monocular or binocular). Similarly a number of sensors 
have been developed to measure vehicle dynamics as 
well. Researchers are now using in vehicle mounted 
sensors to measure different aspects of driving experience 
i.e. fatigue, monotony, body movements etc. Researches 
[15,16] have emphasized the usefulness of capturing 
driver gaze behaviour in creating a robust driving model. 
 
Driving is a complex task. A single sensor alone is not 
enough to analyze such a task in a reliable manner. For 
example, GPS data has limited ability to describe or 
explain a driving situation. Furthermore a sensor can fail 
and produce erroneous data. In-order to model a complex 
driving scenario, multiple sensors data has to be merged 
to give a good representation of driving activity. Another 
hurdle in modeling a driving activity is that driving 
maneuvers can be performed with multiple styles. For 
example, indicator might not always be used just to signal 
lane change, or an overtake maneuver could involve a 
burst of speed but could also be performed by not 
accelerating hard at all [14]. Therefore it is necessary to 
view the multisensory data as a whole system to 
comprehensively model the driving activity.  
 
A successful solution has to combine the benefits of 
multiple sensors such as GPS, radar, lidar and cameras. In 
order to obtain a precise synchronization, a sufficiently 
accurate global time for all sensors and fusion system is 
necessary. Therefore, to obtain a time consistent state for 
all sensors, the measurements have to be integrated in the 
order they were received. IDTS addresses these tasks by 
combining GPS, cameras and vehicle dynamics data using 
RTMaps. 

METHODOLOGY 
 
Architecture Of IDTS 
 
To model a complex driving scenario in a comprehensive 
way, it is necessary to fuse several sensors data. Our test 
vehicle is equipped with vision systems, and sensors to 
monitor the vehicle dynamics as described in Figure 1.  
 
Currently the test vehicle for this project includes the 
following sensors. 

• Mobile Eye: It is a forward collision warning 
system that uses a single camera mounted on the 
windscreen of a vehicle. It also calculates 
variables such as distance from right/left lane 
and time to impact [10]. 

 
• FaceLab: It is a flexible and mobile tracking 

device that tracks head pose, eyelid movement 

and gaze direction in real-time, under real-world 
conditions unobtrusively. This data can then 
further be used to monitor driver attentiveness, 
fatigue e.t.c [11]. 

 
• Vigil System: This visual-based management 

software program analyzes several areas of 
driving performance. Using GPS, accelerometers 
and cameras it measures speeds, accelerations, 
braking, cornering, following distances. The GPS 
input from this system is used to accurately view 
the vehicle’s trajectory [12]. 

 
• RTMaps: It is the software that allows real time 

multiple data acquisition, data fusion and 
processing, at a high rate. The acquired data can 
also be stored for future replay. In this system, 
RTMaps is responsible for gathering data from 
the above mentioned systems (i.e. MobileEye, 
Facelab and vigil system), assigning a timestamp 
to it, synchronize it and storing the data. [13] 

 
Sensor data fusion and the layered architecture of IDTS 
are shown in Figure 2. By fusing in multisensory data 
input, the precision and certainty of calculated estimates is 
increased e.g. the speed of the vehicle acquired from the 
odometer can be checked against the speed calculated 
from the GPS to remove any uncertainty. In this system’s 
architecture, there is a bottom up stream of information 
acquired from multiple sensors.  
 
As we can see in Figure 2 that the fusion layer is separate 
from the application layer (i.e. interpretation and 
assessment layer). This low coupled layered architecture 
is useful because the application layer does not require 
any interfacing with individual sensors. This scalable 
design helps in having multiple application layers while 
just having one sensor fusion layer (this is the only layer 
that has to have some knowledge of the sensor’s 
characteristics). 
 
As already mentioned, in this project the task of fusing 
sensory data input is handled by RTMaps [15]. It 
timestamps and synchronizes the sensor inputs from 
MobileEye, Facelab and VigilSystem during the drive. It 
then stores this drive data for future real-time replay. 
Processing of Facelab data is currently in progress. 
 
The application layer (i.e. Interpretation + Assessment) 
described in Figure 2 handles the risk assessment of the 
maneuvers in the recorded drive. Currently, the 
interpretation layer detects the start, end and centroid of 
the turns from the drive (see ‘Vehicle Turn Angle 
Estimation for a Turn Maneuver’ section for more 
information). It then resolves the position where and if the 
indicator was turned on. It also removes the GPS 
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uncertainty by calculating the error variance (see 
‘Estimation of GPS uncertainty’ section for more detail). 
After the classification of the turn, interpreted data is 
transferred to risk assessment layer where the distance 
between the start of the turn and start of the indicator is 
calculated. The distance of the vehicle from the right and 
left lane along with the speed is also considered to 
identify the risk involved. 
 

 
Figure 2:  IDTS architecture and processing layers  

 
Risk Assessment Criteria 
 
There are a number of events that frequently occur during 
driving. A typical driving scenario would comprise of a 
certain set of driving events and patterns that are repeated 
over time. 
 
Driver instructors typically assess a certain set of skills to 
assess drivers during a driver training session. They use 
various types of standard check lists to assess driving 
performance. For example, the analysis of a right-hand 
turn consists of observing a substantial number of sub 
events. The breakdown of this particular behaviour as 
stated in a sample driver training manuals is shown in 
Figure 3.  
 
In the context of a driver training system, this list of 
driving events will be assessed automatically through the 
combined information gathered from the in-vehicle 
recording devices featuring multiple sensors and 
algorithms used to analyse video data.  
 

Assessment such as the one described in Figure 3 will be 
used to develop a safe performance protocol model that 
can be used to assess automatically risk associated with a 
particular driving maneuver. In-order to achieve a less 
risky driving situation, a driver would have to perform 
these tasks properly in a sequential and timely manner. 
The model will be used as a formal framework to evaluate 
the perceptual and cognitive skills of the driver. 
 
 (Example of ) DRIVER EDUCATION PERFORMANCE 

Right Turn Assessment 
1) Checks mirrors 
2) Positions car properly in lane 
3) Signals right 
4) Reduces speed and keeps wheels straight 
5) Checks traffic thoroughly, yielding to pedestrians 
6) Starts turn when front wheels are opposite point where 
curb begins to curve 
7) Uses proper steering when going into turn 
8) Turns into proper lane 
9) Straightens the wheels by using hand-over-hand, or 
methods maintaining secure control of steering 
10) Adjusts speed to traffic flow 
Source: Michigan Department of Education (1997, p35) 

Figure 3:  Driver Education Performance 

 
Using such a system, an accurate measurement of the 
interaction between the driver, environment and the 
vehicle will be calculated. Table 1, identifies the sensors 
or technologies that output data to monitor each sub-event 
featured in a turn maneuver. For example, by using 
Facelab’s estimates of driver’s eye and head movements, 
tasks like check mirrors and check traffic are verified. 

Table 1:  

 Driving Subtasks and monitoring sensors/technologies 

Turn Sub-Events Sensors/Technology  

• Checks mirrors FaceLab 

• Positions car properly in lane Mobile Eye 

• Signals right Mobile Eye 

• Reduces speed and keeps 

wheel straight 

Vigil System, MobileEye 

• Checks traffic thoroughly FaceLab 

• Starts turn Turn analysis algorithms 

• Turns into proper lane MobileEye 

• Straightens wheel while 

maintaining secure control 

Vigil System 

• Adjusts speed to traffic flow GPS , MobileEye 
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Vehicle Turn Angle Estimation For A Turn Maneuver 
 
In-order to effectively model a turn maneuver, it is 
necessary to determine the complete demographics of a 
turn. IDTS calculates when the vehicle’s turn started, 
when it finished and determines the centroid and the angle 
of the turn (i.e. was it a 90 degree turn or 45 degree turn 
e.t.c.).  
     Estimation of GPS Uncertainty – Evaluation and 
management of sensor uncertainty is important in a 
multisensory environment. GPS uncertainty has to be 
measured to accurately map the trajectory of test vehicle.  
 
GPS provides the coordinates of a location with certain 
accuracy depending on its quality. When mapping the 
trajectory of a moving vehicle, it is important to be able to 
detect that given two GPS points, whether the second 
consecutive GPS coordinates represents a new position of 
the vehicle. Such an issue can be handled through the 
computation of the experimental variability of the GPS 
equipment used. 
 
The GPS was placed at a point and multiple recording 
(frequency 1Hz) were taken to obtain the numerical error 
variance of the GPS. Errors along the horizontal and 
vertical axis are independent and equal. So errors along 
one axis are normally distributed around zero with 

variance 2σ .Equation 1, was used to compute the 
variance along each axis separately. Then the maximum 

value is set as the variance 2σ . 
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where N is the number of GPS points. And calcDist is the 
function that calculates distance between two GPS points. 
Implementation of the function ‘calcDist’ which is using 
Haversine [10] formula to calculate distance between two 
GPS points is given below. 
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where lat1 and lat2 are the latitudes for first and second 
GPS points respectively. long1 and long2 are the 
longitudes for the first and second GPS points 
respectively. R is the radius of the earth and dist is the 
calculated distance between the two GPS points. 
 
Errors being normally distributed means 95% of the 
coordinates obtained by the GPS are distributed within 

two standard deviations σ around the true position (see 
Figure 4) [18]. Given a GPS set of coordinates, a 95% 
confidence interval for the true location can be obtained 
from the variance as follows: 
 

σ2).,.( ≤locationTRUEscoordinateGPScalcDist  (2). 
 
See implementation of ‘calcDist’  
 

 
Figure 4.  Gaussian distribution density function with 

mean μ  and the variance σ  

Numerically, we obtain 22 0272.0 m=σ , which 
corresponds to a true location inside a circle of radius 
32.9cm. In other words two consecutive GPS points 
closer than 32.9cm cannot be considered as different. 
 
Another issue related to the variability of GPS coordinates 
is that the direction of the moving vehicle given two 
consecutive GPS points can be insufficiently accurate for 
trajectory estimation (particularly in order to determine 
whether the vehicle is turning or not). In the worst case 
scenario the inaccuracy on the location estimation can 
lead to a difference in direction estimation by an angle θ  
as shown in Figure 5. Let A and B be the two absolute 
consecutive locations for a moving vehicle. In the worst 

case scenario, ~A and ~B represent the points obtained 

after the GPS error variance (of 2σ ) in A and B 
respectively. So we can say that inaccuracy of vehicle 
heading estimation isθ . 
 
For further analysis we require this angle to be small, and 
we take °= 10θ  as a threshold.  
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Figure 5.  Calculation of Vehicle heading estimation θ  
 
The threshold distance distthreshold _  is derived as 
follows: 
 

distdistthreshold *2_ =  (3). 
 
From Figure 5, we can calculate that the distance (dist) is: 
 

θ
σ

tan
2=dist    (4). 

 
Using Equation 3 and 4, we get: 
 

θ
σ

tan
4_ =distthreshold   (5). 

 
Numerically, we get mdistthreshold 7.3_ = . It means, two 
consecutive GPS points will be considered the same (i.e. 
the vehicle is stopped) if their distance is smaller than 
3.7m. This threshold distance in useful in calculating the 
turn angle, as discussed in the following section. 
 
Turn Detection Algorithm 
 
Once the GPS error variance has been calculated, we 
compute an angle for every GPS point, in-order to 
determine the vehicle’s turn angle. The algorithm for 
computing an angle for each GPS point (except for the 
first and last GPS point) is given below: 
 
For all GPS points 
       Initialize t as 2 

Store three points in array Y for time T-1, T and T+1 
Compute the distance between GPS points at time T-1 
and T+1 

 
      While distance is less than threshold distance 

Add GPS points in Y array for time T-t and T+t, 
if only points exist for time T-t and T+t 

              Increase t by 1 
Compute distance between GPS points at time T-
t and   T+t 

 
   If distance is greater than or equal to threshold distance  

 Compute the tangent angle θ  for GPS point at 
time T given T-t and T+t 

 
With the above mentioned algorithm, every GPS point 
will have a tangent angle based on the points before and 
after it. 
 
Once the angle for every GPS point is calculated, the 
derivative of the angle with respect to the distance 

travelled (
sΔ

Δα
) is computed. αΔ  is the change in angle 

and sΔ is change in distance. This derivative is useful in 
eliminating those GPS points during which the car didn’t 
move a specified threshold distance. The method for 

computing the derivative 
sΔ

Δα
 at each GPS point is very 

similar to the method for computing angle θ  for every 
GPS point. For the algorithm below, assume every GPS 
point now has an assigned angle as well (calculated using 
the above mentioned algorithm). 
 
For all GPS points 
       Initialize t as 2 

Store three GPS points in array Y for time T-1, T and 
T+1 
Compute the distance between GPS points at time T-1 
and T+1 

 
      While distance is less than threshold distance 

Add GPS points in Y array for time T-t and T+t, 
if only GPS points exist for time T-t and T+t 

              Increase t by 1 
Compute distance between GPS points at time T-
t and T+t 

 
     If distance is greater than threshold distance  

Compute the angle difference αΔ between GPS 
points at time T-t and T+t 
Compute the distance sΔ  between GPS points at 
time T-t and T+t 

Compute the derivative 
sΔ

Δα
 for the GPS point T 

 
Figure 6 presents the vehicle trajectory in blue, while the 

red line represents the derivative 
sΔ

Δα
 for the respective 

GPS points. Based on these derivative values, the start, 
peak and end of the turn are segmented out. The start and 
end of the turn are crucial in finding out the centroid of 
the turn. This centroid is then used to calculate the ‘safe’ 
distance to switch on the indicator. 
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Centroid Calculation For The Turn 
 
As already mentioned above the centroid calculation of 
the turns would be useful in identifying the ‘safe’ distance 
at which the driver switches the indicator before the turn. 
Usually, the exact start and exact end of the turn is 
debatable i.e. where do we decide that the car started to 
turn (e.g. when the driver started to turn the steering or 
when the car turned some significant angle). Therefore, 

after the derivatives 
sΔ

Δα
for the whole drive have been 

calculated, the turn is segmented out based on the start 
and end turn using heuristics. Once the turn has been 
segmented out from the drive, its centroid is calculated. 
Even if the exact start of the turn is ambiguous, the 
centroid of the turn would be always accurate. 
 
The centroid of an area is similar to the center of mass of 
a body [19]. The centroid of the turn is calculated between 
the start and end of the turn (i.e. the turn area) using 

derivative 
sΔ

Δα
as a weight function NA  (see equation 6). 

Calculating the centroid involves only the geometrical 
shape of the area. So the area is divided into multiple 
rectangles and using Equation 6 below, the centroid of the 
area is calculated. 
 

∑
∑

=
N

NN

A

CA
C   (6). 

 
where NC is the index of the Nth GPS point in the turn 

area and C is the centroid of the turn.  
 
Figure 6, illustrates the turn’s centroid for both turns in 
DRIVE 1. Other information, like indicator start, indicator 
end and turn start/end are helpful in accurately modeling 
these turns.  
 

 
Figure 6.  DRIVE1 – Representation of vehicle’s GPS trajectory with two left turns (in blue) and the derivative values 

sΔ
Δα

 plot for the corresponding GPS points (in red) 

 
Figure 7, presents the turns involved in DRIVE 2. It consisted of three turns, first was a left turn followed by a right and 

finally a left turn. The derivate 
sΔ

Δα
values are plotted along Y axis and the number of GPS points around X axis. It is evident 

from the graph that using derivatives, the exact nature of the turn can be deduced e.g. whether it was a left or a right turn 
(based on the sign of derivative). This data can also be used to compute the vehicle turn angle. From the graph, we can see 
that the turns can be segmented out from the rest of the drive using heuristics based on the derivative values. All this 
information coupled with indicator, gaze and lane keeping data effectively model the turn scenario. 
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The derivative plot
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Figure 7.  DRIVE 2 – Represents the derivative values 
sΔ

Δα
along Y axis and No. of GPS points on X axis. 

 

MAPPING 
 
Visualization of the drive is an integral part of this 
project. Since its end users are driver trainers, it is 
necessary that all drive data and risky situations are 
represented in a way that is easy to comprehend. Hence, it 
will be easy for the driver trainers to explain some 
specific situation to the driver.  
 
Figure 8, presents an example of the vehicle trajectory 
and drive data for Drive 1. This interactive user interface 
would help drivers and their trainers to assess certain 
maneuvers in a drive by combining the multidimensional 
data acquired from DVE. By combining the numerical 
information from the graph in Figure 6, this interactive 
map (Figure 8) is able to show distance between indicator 
switch on and the turn start/turn centroid. It is also able to 
show if during a maneuver, driver followed the lane 
keeping procedure. 
 

 

Figure 8.  DRIVE1 – Representation on map where 
indicator on (yellow) and indicator off (pink) were 
performed. 
 

FUTURE RESEARCH  
 
In-order to effectively model a turn maneuver, driver’s 
gaze direction should be tracked as well. Different eye 
tracking systems together with head tracking algorithm 
are suggested based on near infra-red or visible light using 
different hardware architectures.  
 
These systems, by calculating the gaze and head direction 
in 3D allow calculating the coordinates where the gaze 
intersects with the world (a virtual plane in-front of the 
driver). Using perspective projection techniques, we plan 
to calculate the approximate depth of a drivers’ gaze in a 
real world. Furthermore, this gaze information would be 
presented on an interactive map. This approximate depth 
calculation would be very helpful in determining the 
difference of gaze pattern in experienced and novice 
drivers.  
 
Along with this, it is necessary to comprehensively model 
all tasks required for a less risky turn. Further work would 
be required to model other maneuvers like overtake, 
roundabout e.t.c. 
 

CONCLUSION 
 
This paper presented a framework for analyzing a turn 
maneuver. The prototype (IDTS) currently, integrates 
information related to vehicle dynamics and road 
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information. Next step is to model driver’s gaze data and 
integrate it in this turn maneuver. The information 
gathered from DVE will help to contextualize, observe 
and better assess a range of driving maneuvers. This 
prototype is the building block to evaluate driver’s 
competency. It acts as a assisting tool for the driver 
trainers.  
 
Eventually both drivers and driver trainers would be able 
to assess the drive using IDTS. As already mentioned, a 
major percentage of road crashes are attributable to 
driving error. Thus, driver training remains an important 
road safety intervention to improve driving performance 
and abilities, particularly amongst young people.  
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